
[Open Source] Building [Energy] Management System 
 

oBeMS -  A Manifesto 
 
 

The Problem We’d Like to Solve 
 

In our energy reduction work with numerous clients, we see a high proportion of 
occasions, where a well managed building management system (BMS) or building 
energy management system (BEMS) could contribute to saving significant amounts 
of energy, but such projects are either precluded by initial capital cost, or fall into 
disuse because on-going revenue budgets are not available to maintain them. 
 
Further, despite the high cost of energy monitoring / automatic meter reading 
equipment and services, and BMS systems, the flexibility of these is limited, possibly 
to defend the commercial interests of the manufacturers and installers. 
 
The following comments apply in general terms to automatic meter reading (AMR), 
energy monitoring systems (EMS), building management systems (BMS), and 
building energy management systems (BEMS). 
 
Generic problems identified in discussions with clients to date include the following. 
 

 Some equipment is rented giving rise to very significant annual charges. 
(Ten or more thousand pounds per year in some cases.) 
 

 Some commercial providers also charge software license and update fees. 
(Thousands of pounds per year for large sites.) 

  

 Manufacturers can withdraw products, or support for products, with little 
notice, at their discretion. 
 

 Interoperability between products (even from a single manufacturer) may be 
limited. 
 

 The costs of inter and intra site data links can be significant. 
 

 Data formats and transfer protocols are seldom open standards or publically 
available. This makes the deployment of the equipment outside of the 
manufactures intended scope of use difficult, and in some circumstances 
the necessary reverse engineering might breach contract or be illegal. 
 

 Closed system architectures allow manufacturers and installers to charge 
high prices for equipment and data manipulations which are in essence 
straightforward. 

 

 The constraint is frequently imposed, that data processing must be carried 
on the service providers servers. This leaves the client no alternative to 



paying whatever the service provider wants to charge, and also leaves 
them, vulnerable if the provider ceases trading, or is taken over by another 
company. 

 

 
 
 

What We Think Is Needed 
 
To overcome the above issues, we would seek to find, and encourage the use of 
equipment and tools with the following attributes. 
 

 Documented behaviour which conforms to open protocols and standards. 
 

 Moderate cost. 
 

 Ease of connection to other equipment using standard communication 
protocols and hardware, particularly IP over Ethernet. 

 

 Open standards for the expression of ‘BMS rules’. 
 

This would bring many benefits. 

 Flexibility. The design is in the hands of the end user. 
 

 Lower development, installation and maintenance costs. 
 

 Low cost intra and inter site networking of system components, ideally over 
existing corporate / domestic Ethernet and Internet infrastructure, using 
generic components. 
 

 The archiving, aggregation, processing and analysis of data using any tool 
that the end user chooses or develops. 

 

Unfortunately solutions with the above attributes are thin on the ground. Some 

excellent work has been done by http://openenergymonitor.org and http://www.re-

innovation.co.uk/ and others, but the systems produced tend to be discrete sensors 

and data loggers rather than integrated systems. 

The proposal then, is to combine sensing, data logging, user interface, 

decision making and control functions in a configurable environment which 

may be implemented on a single machine, or distributed around a network of 

any size. 

 

http://openenergymonitor.org/
http://www.re-innovation.co.uk/
http://www.re-innovation.co.uk/


Who Might Benefit From oBeMS ? 
 
The project aims to support any users or prospective users of BMS systems or 

derived technologies, who are frustrated by the limitation of the commercially 

available options, and who have the technical skills to participate in the development 

of open source solutions which will better meet their needs. 

We are particularly interested in academic projects for which there are no 

commercial ‘off the shelf’ BMS offerings. 

 

Implementation 
 

Has this process started yet ? 

 Yes. For our own use, we have developed a distributed system based on 
open code and protocols. All code is open source (GPLv3), and anybody 
who wants it can have it.  

 

Does the project have a name ? 

 As a working title we have called the project oBeMS, short for ‘open source 
Building energy Management System’, though much of the code might be 
reused in applications outside the scope of energy management and BMS 
systems. 

 
 
What network architecture is used ? 

 Server processes read physical sensors. Client processes interrogate these 
with simple ASCII strings sent to numbered ports. The client can be located 
on the same machine as the server, accessing it by port number at the loop-
back address, or it can be accessed remotely via the designated port 
number and a static IP address from anywhere on the Internet. 

 

What software architecture is used ? 

 Server processes are relatively dumb. They initialise hardware, pre-process 
data, and allow data access over the network. Client processes are 
relatively sophisticated, and in general, store time series data from multiple 
sensors which can be manipulated over various time ranges to derive useful 
indicators. These indicators can be presented graphically to users, and used 
to make operational decisions to control physical hardware, in order to 
control the environment within buildings. 

 



What can be sensed ? 
 

 At the moment, tested server code is in place to read voltages and sense 
pulses on ‘no volt’ contacts. There is also a server to support the access of 
a single DS18B20 one wire bus sensor. 

 

 Analogue sensors either collect data when requested, or alternatively read 
data continuously, applying various averaging techniques to reduce noise. 

 

 Pulse inputs generate interrupts which increment counters. The counter 
values can be interrogated by client processes. 

 

 Client process sample data at configurable intervals, and a collection of 
readings taken at the same time are referred to as a snapshot. Snapshots 
are linked to allow time series data to be collected, processed and acted on. 
Snapshot data, including any decisions made and actions taken, may be 
archived to a server on the network with magnetic disks for later analysis. 

 

 While an archive server is not required to run other parts of the oBeMS 
system, an archive server has been implemented using PostgreSQL on 
Linux. The use of two or three such low cost machines could make the 
archiving very resilient, without a ‘single point of failure’.  
 

 Each site can send data to its own table or tables in the archive database. It 
is possible for users to interrogate the data store with SQL queries from any 
SQL capable data analysis package of their choosing. Multiple tables can be 
queried from a single query, so it possible answer questions of the form 
‘how much renewable energy have I generated today across all my sites ?’. 

 

 A simple demonstration CGI application has been written to access data 
from the archival database via a web interface. 

 
 
How is data represented ? 
 

 Items of data have a descriptive long name, typically used to aid human 
understanding. They also have a short name which can be used to identify 
data items and specify they should be used. The short name must be 
unique. Any data which can be identified by short name, including derived 
indicators, can be graphed, logged, or used to make control decisions. 

 
 
What have we been using all this for ?  
 

 T4 Sustainability Limited http://www.T4Sustainability.co.uk/ has been using 
this software to monitor temperatures, as well as on site electricity 
consumption and generation, but any DC voltage monitoring or pulse 
counting function could be accommodated easily. Servers could be written 
to accommodate sensors with digital interfaces such as SPI and I2C. 

http://www.t4sustainability.co.uk/


 

What hardware is supported ?  
 

 Development began on the MBED controller, see 
https://mbed.org/handbook/mbed-NXP-LPC1768 but has now migrated to 
the Raspberry Pi Model B because of the richness of the Linux development 
environment and the hardware resource available, see 
http://www.raspberrypi.org/faqs 

 

 Although the intent is to be able to run on very low power and low cost 
hardware such as the Raspberry Pi, the client code has been compiled 
under Fedora Linux on PCs using Intel CPUs, and it is envisaged that the 
archival functions will generally be undertaken on machines with magnetic 
disks to avoid damage due to frequent writes to flash media. 

 

 

The Future 

What’s the future direction of the project ?  
 

 To a large degree this depends who gets involved with the project and what 
they want to achieve. 

 

 The ‘roadmap’ from the point of view of the original developers is to make 
the system stable, and add features as required to meet their own needs, 
the needs of their clients, and the needs of the community. 

 

 It is appreciated however that the oBeMS model might be generalised to 
produce simple to use generic devices to read sensed state and switch 
various kinds of load.  

 

What has to be done to make this an ‘industrial strength’ solution ?  
 

 A number of features need to be added to maintain and improve stability 
and integrity. 

 

 Stability (not crashing) should be maintained by investigating any tendency 
for the systems to crash, even after long periods. 

 

 System longevity (the hardware lasting a long time) should be maintained 
by limiting the amount of data written to SD cards, as the number of times 
these cards may be written to without failure is a known weakness. This 
should be achieved by the use of ram-disk, network drives and remote 
storage where possible, as well as the use of very large SD cards (to reduce 
the number of writes per cell per unit time) where these must be used. 

 

https://mbed.org/handbook/mbed-NXP-LPC1768
http://www.raspberrypi.org/faqs


 The system might be booted from a read only file system to minimise the 
scope for corruption of, and lack of access to, the installed software. 

 

 Launch the oBeMS processes automatically from rc or init scripts, such that 
they respawn on failure, and respawn in preference to forcing a restart of 
the system by the watchdog timer or by other means. 

 

 Process messages should be logged to a remote machine so that the cause 
of any crashes can be investigated. 

 

 A watchdog timer should be implemented to reboot the system in the event 
of unrecoverable whole or partial failure of the system. 

 

 A user interface must be provided to allow easy configuration without 
recourse to recompiling the software. 

 

 While the existing oBeMS systems can grow to monitor large numbers of 
sensors and control significant numbers of actuators and loads, the design 
will need to remain scalable from small domestic single board projects, 
through to large and secure distributed corporate solutions. 

 

 Errors should generate alerts, and be handled with as much grace as 
possible, without corrupting or losing data, or placing assets at risk. 

 

 

What features are to be added to the system ?  
 
(This is not an exhaustive list !) 
 

 Sensible key box layouts on graphs. 
  

 Configurable number of days for clients to retain snapshot data. 
 

 Graphing a configurable number of hours or days data on each graph. 
  

 Implementing server interfaces to control electrical outputs. 
 

 Implementing user interface to control electrical outputs. 
 

 Implementing a web socket interface or additional CGI to let users control 
the system. 

 

 Implementing schemes to describe the ‘BMS rules’. 
  

 Devise more / better ways for end users to represent data on graphs etc. 
 

 Vector graph output (.svg), as opposed to bitmap. 



 

 Graphs with nicer fonts etc. 
 

 Indication of the status of switched hardware. 
 

 

What enhancements might be made to the code ? 

 

 Better use of classes, derivation of classes, and enforcing the one class per 
source file convention. 

 

 Coding in the C++ idiom rather than C. 
 

 Avoiding the near repetition of some sections of code, and the use of similar 
but not identical source files in different components of the system. 

 

 Getting the code to work with the latest versions of the wiringPi and GD 
libraries. 

 

 Getting and using an open source alternative to the CGIC library as this is 
not free for any commercial use, and open source systems can be used in 
commercial environments. 

 

 Assessment of security risks. 
 
 

Who are the developers ?  
 

 John Beardmore, managing director of T4 Sustainability Limited. Before 
working in the environmental sector, John worked as a software developer 
on amongst other things, market research analysis and presentation 
software, high availability resilient heterogeneous network systems to collect 
data for the UK national pop charts, and an Internet based simulation of the 
retail wine market for training Deloitte's accounting staff. See 
http://www.t4sustainability.co.uk/?about/people/john-beardmore 

 

 Sam Townsend, computer science graduate, undertook the early 
development work assessing the capabilities of the MBED system. 

 

 Akhil Sudarsan, Nottingham University masters student placement with T4, 
worked on a first draft of the technical documentation of the system. 

 

  
What commercial relationships do the developers have with the project ?  
 

 As the managing director of T4, John will use this code as part of his 
commercial and non-commercial work. Others are free to do the same on 

http://www.t4sustainability.co.uk/?about/people/john-beardmore


the condition that all work and products developed from the oBeMS project 
are placed in the public domain as part of the oBeMS project. 

 

 This approach benefits the client as well as the community, as the client will 
have full access to the source code for all parts of the system, and the 
system can be supported and developed by the client or members of the 
community, as well as the original developers. 

 

 There may be circumstances in which we would charge for work on the 
oBeMS system in line with the policy statement on the T4 web site that, “We 
spread information about sustainability issues and good practice at no cost, 
but charge a fair rate for time-consuming activities”. In practice, this means 
that we are pleased to share what we have created for ourselves for the 
common good, but will generally charge if you wish us to implement new 
functions or features on your behalf. Further, any design and features that 
you pay for, will be regarded as part of the oBeMS project, and placed in the 
public domain as part of the oBeMS project. 

 

 Should oBeMS users decide that they wish to undertake the development or 
maintenance of the software themselves at any stage, or delegate this to 
others, there is nothing to prevent them from doing so, as long as the 
resulting design and features are incorporated into the oBeMS project, and 
placed in the public domain as part of the oBeMS project. 
 

 Third parties may also develop the software, and also extend the range and 
functionality and supported hardware. Again, new design and features will 
become part of the oBeMS project, and be placed in the public domain as 
part of the oBeMS project. Such new features would be a benefit to the 
whole user community. 
 

 By following an Open Source development process, some of the problems 
common to existing EMS, BMS and BEMS systems might be addressed. 

 

Although Open Source Software (OSS) has not been widely used in energy 
management, it has been the approach used in the following projects, which provide 
credible alternatives to their conventional commercial counterparts. 
 

 The Linux Operating System. 
 

 The Open Office / LibreOffice software suite. 
 

 The OSS ‘Graphics Stack’, Gimp (image manipulation), Inkscape (vector 
drawing and art tool), and Scribus (high quality DTP). 

 

 
OSS solutions are also increasingly found in embedded applications, for example 

 

 the Android smart phone operating system. 



 
 
Even government is starting to notice what's going on, and support for Open Source 
software is starting to manifest itself as policy. 
 
http://www.ogc.gov.uk/oss/OSS-policy.html has stated, amongst other assertions, 
that: 
 

“UK Government will consider OSS solutions alongside 
proprietary ones in IT procurements. Contracts will be 
awarded on a value for money basis”. 

 
 
See 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/61962/
open_source.pdf for a more up to date position statement from the UK government. 
 
 
It is our opinion that Open Source Software is now mature enough to contribute to 
cost reductions in corporate building and energy management systems, and that 
contributing to the development of these tools will reap reciprocal benefits for the 
user and the developer community, by developing in cooperation rather than in 
competition with other parties. 
 
It is also hoped that this project will make the purchase and maintenance of these 
technologies affordable to new communities of users, and that they will be 
maintainable, useful and cost effective on a time scale of many decades, rather than 
one or two decades at best. 
 
 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/61962/open_source.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/61962/open_source.pdf

